Package: mlsbm 0.99.4
mlsbm: Efficient Estimation of Bayesian SBMs & MLSBMs
Fit Bayesian stochastic block models (SBMs) and multi-level stochastic block models (MLSBMs) using efficient Gibbs sampling implemented in 'Rcpp'. The models assume symmetric, non-reflexive graphs (no self-loops) with unweighted, binary edges. Data are input as a symmetric binary adjacency matrix (SBMs), or list of such matrices (MLSBMs).
Authors:
mlsbm_0.99.4.tar.gz
mlsbm_0.99.4.zip(r-4.5)mlsbm_0.99.4.zip(r-4.4)mlsbm_0.99.4.zip(r-4.3)
mlsbm_0.99.4.tgz(r-4.4-x86_64)mlsbm_0.99.4.tgz(r-4.4-arm64)mlsbm_0.99.4.tgz(r-4.3-x86_64)mlsbm_0.99.4.tgz(r-4.3-arm64)
mlsbm_0.99.4.tar.gz(r-4.5-noble)mlsbm_0.99.4.tar.gz(r-4.4-noble)
mlsbm_0.99.4.tgz(r-4.4-emscripten)mlsbm_0.99.4.tgz(r-4.3-emscripten)
mlsbm.pdf |mlsbm.html✨
mlsbm/json (API)
# Install 'mlsbm' in R: |
install.packages('mlsbm', repos = c('https://carter-allen.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/carter-allen/mlsbm/issues
- AL - Simulated 3-layer network data
Last updated 3 years agofrom:f42504b709. Checks:OK: 8 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win-x86_64 | OK | Nov 05 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 05 2024 |
R-4.4-win-x86_64 | OK | Nov 05 2024 |
R-4.4-mac-x86_64 | OK | Nov 05 2024 |
R-4.4-mac-aarch64 | OK | Nov 05 2024 |
R-4.3-win-x86_64 | OK | Nov 05 2024 |
R-4.3-mac-x86_64 | OK | Nov 05 2024 |
R-4.3-mac-aarch64 | OK | Nov 05 2024 |
Exports:col_summarizefit_mlsbmfit_sbmget_scoresmean_CRIplot_connectivity_matrixplot_connectivity_networkremap_canonical2sample_mlsbmsample_sbm
Dependencies:assortheadBHBiocGenericsBiocNeighborsBiocParallelblustercachemcliclustercodetoolscolorspacecpp11dplyrfansifarverfastmapformatRfutile.loggerfutile.optionsgenericsggforceggplot2ggraphggrepelgluegraphlayoutsgridExtragtableigraphisobandlabelinglambda.rlatticelifecyclemagrittrMASSMatrixmemoisemgcvmunsellnlmepatchworkpillarpkgconfigpolyclippurrrR6RColorBrewerRcppRcppArmadilloRcppEigenrlangS4Vectorsscalessnowstringistringrsystemfontstibbletidygraphtidyrtidyselecttweenrutf8vctrsviridisviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Simulated 3-layer network data | AL |
The col_summarize function | col_summarize |
R/Rcpp function for fitting multilevel stochastic block model | fit_mlsbm |
R/Rcpp function for fitting single level stochastic block model | fit_sbm |
Calculate continuous uncertainty scores | get_scores |
The mean_CRI function | mean_CRI |
mypackage: A package for fitting single and multilevel SBMs. | mlsbm |
Plot community structure of cell sub-populations as matrix | plot_connectivity_matrix |
Plot community structure parameters as a K x K network | plot_connectivity_network |
Canonical re-mapping of mixture component labels | remap_canonical2 |
R/Rcpp function for sampling from a multilevel stochastic block model | sample_mlsbm |
R/Rcpp function for sampling from a single level stochastic block model | sample_sbm |